THE MOTION OF TURBULENT LIQUID FILMS

Yu, T, Borshchevskii, I. I, Sagan’, UDC 532.529,5
S, 1, Tkachenko, and V, E, Shnaider

The results of theoretical investigations into the motion of turbulent liquid films are set
out, Problems of stabilizing the film in the initial part of a tube and of the motion of
liquid and gas in the rod mode are considered, and the possible conditions for the forma-
tion of gas locks are elucidated.

In the tubes of vertical evaporators such as those used in the food industry, both thin laminar and
thick turbulent liquid films may flow. In the latter case the term "film" is rather arbitrary, A number of
research workers have studied the motion of laminar liquid films [1-4]; turbulent films were considered in
[5]. In this paper we shall set out the latest results concerning the motion of turbulent liguid films in ver-
tical tubes,

Stabilization of the Motion of the Film in the Initial Part of the Tube. Let liquid and gas pass into the
tube in the manner indicated in Fig,1, Clearly, after contact between the components, the stabilization of
their motion will be interlinked, Let us assume that the motion of the components at the entrance is axially
symmetrical, the liquid and gas are incompressible, the mass forces acting on the gas may be neglected,
the liguid has a laminar underlayer ¢the constant thickness and the velocity field of which are determined
as in [5]), and the film thickness varies insignificantly, Subject to these assumptions, the steady~state
motion of each component outside the laminar underlayer along the longitudinal axis x is described by the
equation

2
ov?

1 0 du opP
g = Lo 2 (o S ) =T e g o )

" or ox

where the function & is determined from the equation of motion taken in projection along the r axis in the
following way:
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Following [5-8], in Eq, (1) we may make the substitutions
v = dil, (v, —vy,) @
Py=P,+ ~P,. ®)

R,—¥6

The exact estimation of the dimensions L, is at the moment quite a difficult problem., Remembering
that in the case under consideration the motion of the components takes place quite cloge to the entrance
into the tube, we may to a fair accuracy consider that for the liquid Ly ~ 6 while for the gas Ly ~ Ry,

After making the corresponding substitutions, we refer the equation to the liquid component by putting

1 =2. The integral of the resultant equation should obey the following boundary and initial conditions
Uy =0y for 7=Ry— 8, ,0<Tx<To0, (4)

U, = Uy, fOT R2—6<r<R2. x = 0.
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The general expression derived by the Fourier method and satisfying (4) takes the following form for
a sufficiently thin laminar underlayer

x
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In Eq. (5) we have introduced the following nomenclature:
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Z, are Bessel functions of the first kind and the »-th order:
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yon are the positive roots of the equation;

Zy0r)—r, =0 for 0< A< oo. (8)

1

The integral (5) includes the as-yet unknown coefficients fyn, depending not only on the distribution of
the pressure and the field of transverse velocities of the liquid but also on the kinematics of the longitudinal
velocities of the gas component, Let us therefore turn to the derivation of a formula giving the gas veloci-
ties. To this end we make use of Eq. (1), referred to the gas component, with due allowance for (2) and (3)
and with vyjgm = 0, i.e., we consider that, at the entrance, the laminar underlayer in the gas component on
the "boiling" surface of the liquid is extremely insignificant, The integral of this equation has to satisfy
the conditions

v, =0, for 0<<r<<R,— 6, x=0 (9)
U=V for F=Ry,—90 O<x<w.

If we introduce the nomenclature u = 2vysivy +Av§,where Avy is the gas velocity in excess of vy, the solu-
tion takes the form
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where the coefflclents ¢in, fn, and byp are determined by means of (6), with ysy replaced by yyn and cor-
respondingly vig, —1/py - 9P/8x + &;, The values of yy are defined as the positive roots of

Zy 0 reros =0 for 0= A< co. (1)
The function Ay is found by means of Eq, (7) with

\

P
Zy=Z, (.‘/m Rg_g) :
The coefficients cyp and cyy in integrals (5) and (10) are determined simply by the velocity distribu-
tion of the components at the entrance into the tube, The development of flow along the length of the tube
is determined by the coefficients fan, fin, ben, and byn. The latter establish a mutual relationship between
fon and fyy, satisfying the condition of constant volumetric rates of flow of the components

R‘_’
Q, = 2m jv vrdr; Q= 2n g vyrdr. (12)
Ro—

—0 0
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Fig.1. Scheme of flow: I) stabiliza-
tion section; Iy section of steady
motion; 1) tube; 2) liquid; 3) gas; 2',
3') velocity profiles of the liquid and
gas at the entrance into the tube; 4)
cylindrical insertion piece,

The coefficients foy, in turn also have to satisfy the condi-
tion of continuity of the tangential stresses at the interface be~
tween the components in any cross section of the two-compo-
nent flow

R S (13)
1V “or 1 R AL or 2r=R2—6.

Generally speaking, solutions (5) and (10) are only valid
for a short entrance section, since on moving away from the
entrance the effect of the walls increases by v+, In order to
refine the solution, we must combine (5) and (10) with the con~
ditions of flow in the steady section by refining the indices
J a4 Apax,

Stabilization of the combined motion of the components
takes place at a fair distance from the tube entrance, equal to
(10-12)d. Let us now study this state of affairs,

Rod-Like Motion of the Components, In considering this
mode, we shall attempt to describe the motion of each compo-
nent in both the turbulent core and the laminar underlayer, In
Eq. (1) we therefore introduce Vir in the following form:

v =202 Lo, + v, (14)

In the present case we shall consider that the effect of the
conditions of entry on the flow are extremely insignificant, and
that the influence of the wall predominates, Basing our con-

" siderations on the hypothesis of A, M, Kolmogorov [ 8}, we

therefore take the coefficient of turbulent momentum transfer
as proportional to the local velocity and the distance from the
wall {for the liquid) or from the interface between the compo-
nents for the gas), i.e., we assume that Ly =Ry—r and Ly =R,

—&—r, Then, allowing for (14) with 8v;/8x = 0, in the case of uniform flow the solution of Eq, (1) relating
to the gas, for example, should obey the boundary conditions

vy =vsfv=v, for r=R,—§, (15)

where v is the gas velocity in excess of vg. If we introduce the nomenclature

v s T vV
Q= —ay, U, =—2and§ =2 ,
Uy P 200,

after some simple transformations Eq. (1) may be expressed as follows:

e TR

dn vy (16)

do v,

Multiplying (16) by e~ and introducing the nomenclature z = ne~", we convert it to the following form:

dz vy

(17)

— 20z = e,

do av,

The integral of the latter equation is represented by the following expression:

(4

y (18)

n=e"""8, Ye“" e edn,
. on

2 .
where erf ¢ = —1-/—5—5 e'¢zd¢ is the probability integral. If we introduce the function

0
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the formula for the excess velocity profile may be expressed in a form more convenient for practical use
=6, (1 4 f,) erf ge¥’. (20)

By comparison with other logarithmic formulas, Eq, (20) has the advantage that at a solid wall it gives
zero velocities, and furthermore it directly indicates that

2
dv v,

dn 1--0 71

, @1)

which corresponds to the physics of the phenomenon, Experimental verification of a formula of the (18)
type has been carried out on a number of occasions [6, 9, etc.].

Generally speaking, we may also derive a formula analogous to (17) for the velocity profile in a liquid
film, However, considering that the thicknegs of the film 6 is comparatively slight, we may, in agreement
with [3], regard it as plane to a first approximation, On this assumption, we may write Eq. (1) for the flow
under congsideration thus:

P 0 v
(o —p)g— o T -aT(vz+VJ)~5§—=0 (22)
(e =8—R,-+1).

We require that the gsolution of this equation should obey the boundary conditions

dv, Yt
e A

- and v, =0 for 7 = R,. (23)

We seek the solution of (22) in the form of a series. Following [10], we find for the rod-like mode

2 —_— — —_— —_—
b, = D6 [1 _n—yv 2 L1 en | — Tod 1+ m+1—9 g + py—1 S%n] . (24)
2p n—1 n—1 PyV, 2n

2n

Correspondingly, for determining the generalized friction we obtain the formula
do . D8 ntb—1) 81[1—8%‘”‘”]} T Crt DAY
de, 2y n—1 P 2n

where D = 1/vy (1—py/pg)g— (1/pav9) (0P/8x) and n are constants for the specified mode, & = £/5.

T = oy, { [ — et (25)

As we should expect, for y = 1 the turbulent friction is equal to zero, while the velocity profile vy be-
comes parabolic, If for the laminar mode we make the substitution & = 1-y/6 in (24), we immediately ob-
tain the formula derived by P. Semenov [1]. For turbulent flow of the film y = 1,while n ~10, Since € < 1
even for a small distance from the wall of the tube € ~0, Hence (24) has all the properties of the vy pro-

files in a liquid film indicated by Semenov, The missing coefficients ¢ and n may be determined from the
known values of Ty and vy4.

’

Dynamics of the Waves on the Surface of a Turbulent Film, For "thick" films the wave may have
dimensions sufficient to initiate the formation of "locks," The conditions required for the formation of
waves and the parameters of the latter may be derived by the method of small perturbations, Here we must
remember that the generalized expression for friction in turbulent flows is variable [11]. For example, in
the case of a film Eqs. (24) and (25) yield

V= ;v = A - By - Ctf* 4.+ const. (26)

de,

Let us once again assume that the radius of the tube R, is so large that the flow in the film may, to
a first approximation, be regarded as planar. In order to describe the wave motion of the flow under con-
sideration in the well-known manner [13, 14], we obtain the differential equation

1529



& O, 7 wl  a
> —2 =y AR -— A%, 27
% op " £E+2 3 oy £ (27)

a 0
—— A — AE—.
% E+ 0, a)% Ag

where A =8 /8x% + 8/8y%, 8v1/8x ~0, while the current function ¢ satisfies the relations
P9 % (28)

U, = — [=—

oy v ox

In Eq, (28) the primes regpectively indicate the horizontal and vertical velocities of the liquid due to
the waves.

Let
Ag = ggMHax, . (29)

It is clear that stable gas locks may exist with stable waves, i.e., waves neither increasing nor de-
creasing in time, This is quite possible if in (29) the values of A are purely imaginary, We then have to
find the conditions under which the real part of A equals zero, i.e., we have an eigenvalue problem, Remem-
bering that the solution of this kind of problem involves serious mathematical difficulties [14, 13], following
[14], we shall confine attention to the consideration of a layer of liquid in which the profile of the velocities
vy may be approximated by a linear relationship of the form

v, = M+ Ny. (30)
If we introduce the nomenclature

A o A—iaM —a?A _ a(iN+aB)
B ’ 1 B ’ 1_~ B ’

a =

x=(@+a)Vb and 0= *B(x),
and allow for (24), (29), and (30), Eq. (27) assumes the form

12 — 0

(1 —x)p — bwb‘

On the basis of (31), the values of 8 bounded in the range 0 < x < « are expressed by Laguerre poly-
nomials P(L) [12]. The eigenvalues of the parameter of the equation will be

p=0. (31)

by —g

% _m (m=0,1,23..) (32)
5 ( )

Let us assume that, in the flow under consideration, a mode of motion of the components is realized
for which m = 0, It is then not difficult to see that

iA N 2iaA ) 33)

(. = ——— T e

i BM M

It is clear that the values of A will be purely imaginary if

¢, =V pssind, 34)
as y—~m/2andn=1,3,5,...,or if the equation
M/, N ¥
= A —f 35
=5y , ( 3 ) (35)

is satisfied, where

N o\ /%Ay N
= ——1, 6,=arct —_—,
bs (BM)+(M) 1= A A

Analysis of the latter relationships shows that the most probable condition for the development of the
stable waves under consideration on the surface of the film is

1__pl_z__1__(_‘3£___2«¢0), ‘ (36)
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where the waves may have different lengthg, velocities, and directions of propagation, If in (34) we pass to
laminar flow and allow for the linearization of the original Eq. (27), it is not hard to derive the following
Semenov formula [4] '
1
E -
a = constc, (—1—) . (37)
. oh
On the basis of (28), (29) and the solution to (31), we obtain the following expression for the amplitude
function

LT ' d —5§9VE]
9, =— Lconst shay -+ S P(L)e sho (y — 2) dz ] . (38)
¢ 0
Thus in order to determine the additional resistance per unit length of flow due to the waves we have

L
AP = —“2‘);- g 8 (9) dy. (39)

v

0

Comparison of (38) and (39) shows that the additional resistance is proportional to the wavelength and
the square of the height of the wave,

NOTATION
r,x, 6% are cylindrical coordinates;
\7} is the longitudinal velocity of the particles of the /-th component (! = 2 for the liquid and Z = 1
for the gas);
vyl is the radial component of the velocity of the corresponding particles;
Py is the pressure inside the I-th component;
g is the gravitational acceleration;
Py is the mass density of the corresponding particles;
8 is the film thickness;
AY) is the change in film thickness at the entrance section;
vlT is the generalized viscosity;
ay are experimental constants;
Ly are the corresponding turbulence scales;
Tyxl is the generalized frictional stress tengor in the equation of motion along the r axis;
Ry = is the radius of the tube;
a is the surface tension;
V9§ is the velocity of the liquid on the surface of the film;
Voo is the velocity distribution of liquid across the film section at the entrance to the tube;
Vig is the velocity of the gas at the entrance into the tube, regarded as known;
Valam is the velocity of the liquid at the boundary of the laminar underlayer;
Qy, Q are the volume flows of the gas and liquid, respectively;
vy is the kinematic viscosity of the corresponding component;
To is the frictional stress at the surface of the liquid;
Tiam is the frictional stress at the tube wall for laminar motion of the liquid;
P is an experimental coefficient;
A,B,C are constants determined by the kinematic flow of the liquid;
0(y) is the amplitude function;
t is the time;
a is the wave number;
A is the damping decrement;
M, N are constants;
Cx is the wave velocity;
h is the height of the wave;
Z is an auxiliary variable,
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