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The  r e su l t s  of theore t ica l  invest igat ions into the motion of turbulent  liquid f i lms  a r e  set  
out. P r o b l e m s  of s tabi l iz ing the f i lm in the init ial  pa r t  of a tube and of the motion of 
liquid and gas  in the rod  mode  a r e  cons idered ,  and the poss ib le  conditions for  the f o r m a -  
t ion of gas  locks a re  e lucidated.  

In the tubes of ve r t i ca l  e v a p o r a t o r s  such as those  used  in the food indust ry ,  both thin l amina r  and 
thick turbulent  liquid f i lms  m a y  flow. In the l a t t e r  case  the t e r m  ~ftlm n is r a t he r  a r b i t r a r y .  A number  of 
r e s e a r c h  w o r k e r s  have studied the mot ion of l amina r  liquid f i lms  [1-4]; turbulent  f i lms  were  cons idered  in 
[5]. In this  pape r  we shal l  se t  out the l a tes t  r e su l t s  concerning the motion of turbulent  liquid f i lms  in v e r -  
t i ca l  tubes .  

Stabil ization of the Motion of the Fi lm in the Init ial  Pa r t  of the Tube .  Let liquid and gas  pass  into the 
tube in the manner  indicated in Fig .  1. C lea r ly ,  a f t e r  contact  between the components ,  the s tabi l izat ion of 
the i r  mot ion will be in ter l inked.  Let us a s s u m e  that the motion of the components  at the en t rance  is axial ly 
s y m m e t r i c a l ,  the liquid and gas  a r e  i ncom pres s ib l e ,  the m a s s  fo rces  acting on the gas  may  be neglected,  
the liquid has a l amina r  under l aye r  (the constant  th ickness  and the veloci ty  field of which a r e  de te rmined  
as  in [5 ] ) , and  the f i lm th ickness  va r i e s  insignif icant ly.  Subject to these  a s sumpt ions ,  the s t e ady - s t a t e  
motion of each component  outside the l am i na r  under layer  along the longitudinal axis x is desc r ibed  by the 
equation 

Ov~ 1 0 / r Ovz ~ OPt + ( P , - - P l )  g + q ~ ,  (1) 
P' ox = 7 or \p,r,, T /  0x 

where  the function ~ is de te rmined  f r o m  the equation of motion taken in pro jec t ion  along the r axis  in the 
following way-" 

. . . . . . . .  r ~ + rrxz -[ . . . .  (rO?rzv~) dx. 
r Or r dr r Or 

Following [5-8], in Eq.  (1) we m a y  make  the subst i tut ions 

,T 2 (2) = alL l (vl - -  Vlam), 
(~ (3) P e =  P, ~ - -  ~ P l "  

R2--6 
The exact  e s t ima t ion  of the d imensions  L l is at the moment  quite a difficult p r o b l e m .  R e m e m b e r i n g  

that  in the case  under  cons idera t ion  the mot ion of the components  takes  place  quite c lose  to the ent rance  
into the tube,  we may  to a f a i r  a c c u r a c y  cons ider  that for  the liquid L 2 ~ 8 while for  the gas L 1 ~ R 2. 

Af te r  making the cor responding  subst i tu t ions ,  we r e f e r  the equation to the liquid component  by putting 
l = 2. The in tegra l  of the resu l tan t  equation should obey the following boundary and init ial  conditions 

v 2 = v ~  for r = R 2 - - 6 1 a m ,  O < x < o o ,  (4) 

V 2=v~0 for R e - - 5 < r < R e ,  x = 0 .  
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The  g e n e r a l  e x p r e s s i o n  de r ived  by  the F o u r i e r  me thod  and sa t i s fy ing  (4) t akes  the fol lowing f o r m  fo r  
a suf f ic ien t ly  thin l a m i n a r  u n d e r l a y e r  

- -  a 2 y~ dx Ii 
I 

0 

x x ~ Y 

q- exp ; a~SAe,flx f exp ( j agSAe~dx ) ( df 2'~-~-x @ '%, ) dx ] Zo ( y2,, ~ ) . (5) 
0 0 0 

In E q. (5) we have in t roduced  the fol lowing n o m e n c l a t u r e :  

1 

df2,~_ _ 2 

dx Gz~ (u~) 
b2n o 

P2 Ox " rZ o y ~  dr; 

1--~o ~- g 

(6) 

Z u a r e  B e s s e l  funct ions of the f i r s t  kind and the u - th  o r d e r :  

A2,~= 1 O Zo Y~,~ . L - - Z  o y~ Z0 Y2~ ; (7) r " Or ~ ,  ' Or 2 ., . 

Ym are the positive roots of the equation; 

z0 (~r) ] r -a  = o ~or 0 < ~ < oo. (s) 

The in t eg ra l  (5) inc ludes  the a s - y e t  unknown coef f ic ien t s  f2n, depending not only on the d i s t r ibu t ion  of 
the p r e s s u r e  and the f ield of  t r a n s v e r s e  ve loc i t i es  of the l iquid but a l so  on the k inemat i c s  of the longi tudinal  
ve loc i t i es  of the gas  componen t .  Let  us t h e r e f o r e  tu rn  to the de r iva t ion  of a f o r m u l a  g iving the gas  v e lo c i -  
t i es~  T o  this  end we m a k e  use  of Eq .  (1), r e f e r r e d  to  the gas  componen t ,  with due a l lowance  fo r  (2) and (3) 
and with Vflam = 0, i .e . ,  we cons ide r  tha t ,  at the en t r ance ,  the l a m i n a r  u n d e r l a y e r  in the gas  componen t  on 
the "boi l ing" s u r f a c e  of the l iquid is e x t r e m e l y  ins igni f icant .  The  in t eg ra l  of this equat ion has  to sa t i s fy  
the condi t ions  

v 1 = Vx0 for 0 < r < R2--  5, x = 0; (9) 

v t=ve6 for r =  Rz--@, 0 < x < ~ .  

If we in t roduce  the n o m e n c l a t u r e  u = 2v2rY2xvl + A ~ , w h e r e  AV 1 is the gas  ve loc i ty  in e x c e s s  of v25, the s o l u -  
t ion  t akes  the f o r m  

x 

n = 0  0 

x x x 

(G.-- 6 )  ~ , , , 

0 0 0 

(~o) 

where  the coef f ic ien t s  e ln , f in,  and bin a re  d e t e r m i n e d  by means  of (6), with Yzn r e p l a c e d  by Yln and c o r -  
r e spond ing ly  v~0, - 1/Pl" a P / 0 x  + ~l .  T he  values  of Ym a r e  defined as the pos i t ive  roo t s  of 

Zo(Xr)ir-R-6=O for 0 < X <  co. (11) 

The  funct ion Aln is found by m e a n s  of Eq .  (7) with 

The  coef f i c ien t s  C2n and t i n  in i n t eg ra l s  (5) and (10) a r e  d e t e r m i n e d  s i m p l y  by the ve loc i ty  d i s t r i b u -  
t ion  of the componen t s  at the e n t r a n c e  into the tube.  The  deve lopment  of flow along the length of the tube 
is d e t e r m i n e d  by the coef f ic ien ts  f2n, fro, bm,  and bmo The  l a t t e r  e s t ab l i sh  a mutua l  r e i a t ionsh ip  be tween 
f2n and fln, satisfying the condition of constant volumetric rates of flow of the components 

R.~ R 2 - - 6  

Q~ = 2~ (12) v2rdr; Q~ = 2n S vlrdr" 
R~.--6 0 
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Fig .  1. Scheme of flow: I) s t ab i l i z a -  
t ion sect ion;  II) sec t ion  of s teady  
motion;  1) tube; 2) liquid; 3) gas;  2 ' ,  
3') veloci ty  p ro f i l e s  of the liquid and 
gas  at the en t rance  into the tube; 4) 
cy l indr ica l  inse r t ion  p iece .  

Th@ coeff ic ients  fm in turn  a l so  have to sa t i s fy  the condi-  
t ion of continuity of the tangent ia l  s t r e s s e s  at the in te r face  b e -  
tween the components  in any c r o s s  sect ion of the t w o - c o m p o -  
nent flow 

0 I 0 r=~-~" 
- -  Vl = v~ ( 1 3 )  

Genera l ly  speaking,  solutions (5) and (10) a re  only valid 
for  a shor t  en t rance  sec t ion ,  s ince on moving away f rom the 
en t rance  the effect  of the walls i n c r e a s e s  by v T. In o rder  to 
ref ine  the solution, we mus t  combine (5) and (10) with the con-  

g ~  

ditions of flow in the s teady sect ion by ref ining the indices 

f  AZndX. 
Stabil ization of the combined motion of the components  

takes  p lace  at  a f a i r  dis tance f rom the tube en t rance ,  equal to 
(10-12)d. Let  us now study this  s ta te  of a f f a i r s .  

Rod-Like  Motion of the Components .  In consider ing this  
mode,  we shal l  a t tempt  to desc r ibe  the motion of each compo-  
nent in both the turbulent  core  and the l amina r  unde r l aye r .  In 
E q. (1) we t h e r e f o r e  introduce @ in the following f o r m :  

~r = 2a~ Llv I + ~,. (14) 

In the p r e sen t  case  we shal l  cons ider  that the effect  of the 
conditions of en t ry  on the flow a re  e x t r e m e l y  insignif icant ,  and 
that  the influence of the wall  p r edomina t e s .  Basing our con-  
s idera t ions  on the hypothesis  of A. M. Kolmogorov [ 8], we 
the re fo re  take the coefficient  of turbulent  momen tum t r a n s f e r  
as p ropor t iona l  to the local  veloci ty  and the dis tance f r o m  the 
wall  (for the liquid) or  f r o m  the in te r face  between the co mp o -  
nents (for the gas) ,  i .e . ,  we a s s u m e  that L 2 = R 2 - r  and L t = R~ 

- 6 - r .  Then,  allowing for  (14) with OVl/OX = O, in the ca se  of uniform flow the solution of Eq.  (1) re la t ing  
to  the gas ,  fo r  example ,  should obey the boundary  conditions 

V l = V 6 - ~ - v = V  8 for r = R ~ - - 6 ,  

where  v is the gas  veloci ty  in excess  of v 6. If we introduce the nomenc la tu re  

~lVh- n 1 r v ~ "r~ an.d 61 , - -  , q~ --:- - - a l ,  v. = = �9 
R2 - -  6 v ,  Pl 2alv, 

(15) 

a f t e r  some  s imple  t r a n s f o r m a t i o n s  Eq.  (1) m a y  be e x p r e s s e d  as fol lows:  

d~l - -  n d~l ~1 _ _ .  = 2nqD + - -  
dcp dep av , 

Multiplying (16) by e -~ and introducing the nomencla ture  z = 77e-~, we conver t  it to the following f o r m :  

(16) 

d_~_z _ 2~z = vl e-n. 
d T av. 

(17) 

The in tegra l  of the l a t t e r  equation is r e p r e s e n t e d  by the following express ion :  

~l = e ~'+n 61 f e -n  ~ err r 
.] on 

(p 0 

where  e r f  ~o = e qo d~o i s  the probabi l i ty  in tegra l .  If we introduce the function 
0 

(18) 
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f ~ = 2 j' ~le-r dq, (19) 
v ~eriq0 0 9 1 v l - -  

dq 

the formula  for  the excess  velocity profi le may be expressed  in a form more  convenient for  prac t ica l  use 

~l = 61 (1 q- fO err q~e~ ~. (20) 

By compar ison  with other logari thmic formulas ,  E q. (20) has the advantage that at a solid wall it gives 
zero velocit ies,  and fu r the rmore  it d i rect ly  indicates that 

dv t v2 - -  * , (21) 
dq n~0 vl 

which cor responds  to the physics  of the phenomenon. Exper imenta l  verification of a formula  of the (18) 
type has been ca r r i ed  out on a number  of occasions [6, 9, etc.] .  

General ly speaking, we may also derive a formula  analogous to (17) for the velocity profi le in a liquid 
f i lm.  However,  considering that the thickness of the film 6 is comparat ively  Might, we may,  in agreement  
with [3], r ega rd  it as piane to a f i rs t  approximation.  On this assumption,  we may write Eq. (1) for the flow 
under considerat ion thus : 

0p 0@ (P2 --  Pl) g - -  O--~ -i- P2" (v 2 q_ vr ) OV~Oe = 0 (22) 

(~ = 5 - -  R 2  + r). 

We require  that the solution of this equation should obey the boundary conditions 

Ova_ = ~z _ and v 2 = 0 for r : R~. (23) 
0e 9~v~ 

We seek the solution of (22) in the fo rm of a s e r i e s .  Following [10], we find for the rod- l ike  mode 

[ . e--q~ e~nj To6 [ 2 n q - l - - q )  ,--I ] D62 1 n - - ,  e ~ -  1 +  s 1 +  e~ ~ . (24) 
v~ - -  2~ n - -  1 n ~ 1 92v2~ 2n 2n 

Correspondingly,  for determining the general ized fr ic t ion we obtain the formula  

I dv2 D6 n ( , - -  1) __ ~(,,_1~1 / __ _ _  e l i 1  T 0 ( 2 n +  I ) ( 1 - - ~ )  [ I - - e ~ " - l ] ,  (25) 
' r : p 2 v 2 [  de1 -i- 2 ~  n - - 1  . ~2 2n 

where D = 1/v 2 ( 1 - P t / P 2 ) g -  (1/p~v~)(0P/0x) and n a re  constants for the specified mode, ~l = e/6 .  

As we should expect, for r = 1 the turbulent fr ict ion is equal to zero,  while the velocity p ro f i l e  v2 be-  
comes parabol ic .  If for  the laminar  mode we make the substitution ~l = l - y / 5  in (24), we immediately  ob- 
tain the formula  derived by P.  Screener [1]. For  turbulent flow of the film r ~ 1,while n ~ 10o Since et < 1, 
even for  a smal l  distance f rom the wall of the tube e~n ~ 0. Hence (24) has all the proper t ies  of the v~ p ro -  
files in a liquid film indicated by Screener.  The missing coefficients r and n may be determined from the 
known values of 7 0 and v26, 

Dynamics of the Waves on the Surface of a Turbulent F i lm.  For  Mthick n fi lms the wave may have 
dimensions sufficient to initiate the format ion of "locks." The conditions required  for  the formation of 
waves and the pa rame te r s  of the lat ter  may be derived by the method of small  per turbat ions .  Here we must  
r e m e m b e r  that the general ized express ion for fr ict ion in turbulent flows is variable [ 11]. For  example, in 
the case  of a film Eqs .  (24) and (25) yield 

T_ "c -- A q- By q- Cy ~ q-...-/= const. (26) v dv 

Let us once again assume that the radius of the tube R z is so large that the flow in the fi lm may,  to 
a f i rs t  approximation,  be regarded  as p lanar .  In order  to descr ibe  the wave motion of the flow under con-  
s iderat ion in the weli-known manner  [13, 14], we obtain the differential equation 

1529 



Ov r 0 O h~ -1- v 2 0 O~ O~v2 vrh~ -~- 2 - -  �9 - -  A~, 
0-7 . oy, ou oy 

where  A = 0Z/Ox z + OZ/Oy 2, OvT/Ox ~ O, while the cu r ren t  function ~ sa t i s f i e s  the re la t ions  

Oy ' Ox 

(27) 

(28) 

In Eq.  (28) the p r i m e s  r e s p e c t i v e l y  indicate the hor izonta l  and ve r t i ca l  veloci t ies  of the liquid due to 
the waves .  

Let  

A~ = Oe-Xt+~L (29) 

It  is c l ea r  that  s table gas  locks m a y  exist  with s table  waves ,  i .e . ,  waves nei ther  inc reas ing  nor  de -  
c r ea s ing  in t ime .  This  is quite poss ib le  if in (29) the values  of )~ a re  pure ly  imag ina ry .  We then have to 
find the conditions under which the r e a l  pa r t  of X equals  ze ro ,  i .e . ,  we have an eigenvalue p rob l em.  R e m e m -  
ber ing  that the solution of this  kind of p rob lem involves se r ious  ma thema t i ca l  difficult ies [14, 13], following 
[14], we shal l  confine attention to the cons idera t ion  of a l aye r  of liquid in which the prof i le  of the veloci t ies  
v2 may  be approx imated  by a l inear  re la t ionship  of the f o r m  

v~ = M + NV. (30) 

If  we introduce the nomenc la tu re  

A 
al-- ~- , 

~. - -  JaM - -  aZ A cx = , bl = a ( i N  + ~zB) , 
B B 

x 

x = (y + al) V - ~  and O = e 2 ~ (x), 

and allow for  (24), (29), and (30), Eq .  (27) a s s u m e s  the fo rm 

xl3'; q- (1 - - x ) ~ '  blal - - c l  (31) 
' 4 ] / ~  [ ~ = 0 .  

On the bas i s  of (31), the values  of/3 bounded in the range  0 < x < oo a r e  e x p r e s s e d  by Lague r r e  po ly-  
nomia ls  P(L) [12]. The e igenvalues  of the p a r a m e t e r  of the equation will be 

bin1 - -  cl (32) 
- -  _ . = m  ( r e = O ,  1, 2, 3 . . . .  ). 

4 V bl 

Let us a s sum e  that ,  in the flow under  cons idera t ion ,  a mode of mot ion of the components  is r ea l i zed  
for  which m = 0. It is then not difficult to see  that  

C x 
iL N 2iczA (33) 
i~z B M  M 

It is c l ea r  that  the values  of X will be pure ly  i m a g i n a r y  if 

c x = ]/'p** sin 01 

as  01-*vn/2 and n = i ,  3, 5 . . . .  , or  if the equation 

(34) 

is  sa t i s f ied ,  where  
( N )2 / 2 c z A ]  ~ 

O*= ~ + k  M 1 '  0 a = a r c t g  
.N 

2~zAB 

(35) 

Analys i s  of the l a t t e r  re la t ionships  shows that  the mos t  p robable  condition for  the development  of the 
s table  waves  under  cons idera t ion  on the su r f ace  of the f i lm is 

1 - -  2-L ~, ,  
p~ p~g ax 
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where  the waves  may  have different  lengths,  ve loci t ies ,  and di rec t ions  of propagat ion.  If in (34) we pass  to 
l amina r  flow and allow for  the l inear iza t ion  of the or iginal  Eq.  (27), it is not hard  to der ive  the following 
Semenov fo rmu l a  [4] 

I 

0~ ~ COI1S~ C x 

On the bas i s  of (28), (29) and the solution to (3t), we obtain the following express ion  for  the ampli tude 
function 

n ; ] 01 1 [ " z - a g ~  
= - -  co s tshag@ P ( L )  e 2 s h a ( g - - z )  dz . 

(z 
o 

(3s) 

Thus in order to determine the additional resistance per unit length of flow due to the waves we have 

(y) dg.  
2 n  I (39) 

Comparison of (38) and (39) shows that the additional resistance is proportional to the wavelength and 
the square of the height of the wave. 

r, x, 0* 

Vl 

Vr/ 
Pl  
g 

Pl 
6 
A5 
# 
a/ 
Ll 
T r x /  
tt 2 = 1 
( r  

v26 
v20 
vl0 

V21am 
QI, Q2 
u/ 
T o 
Tlam 
r 
A, B, C 
o(y) 

t 

M, N 

C x 

h 
Z 

N O T A T I O N  

are cylindrical coordinates; 
is the longitudinal velocity of the particles of the /-th component (l = 2 for the liquid and I = i 
for the gas); 
~s the radial component of the velocity of the corresponding particles; 
~s the pressure inside the l-th component; 
Is the gravitational acceleration; 
ts the mass density of the corresponding particles; 
is the fi lm th ickness ;  
is the change in f i lm thickness  at the en t rance  section;  
Is the genera l i zed  v iscos i ty ;  
a r e  expe r imen ta l  constants ;  
a r e  the cor responding  turbulence sca les ;  
is  the genera l ized  f r ic t ional  s t r e s s  t ensor  in the equation of motion along the r axis ;  
is  the radius  of the tube; 
is  the su r face  tension;  
is the veloci ty  of the liquid on the sur face  of the f i lm; 
is the veloci ty dis t r ibut ion of liquid ac ro s s  the f i lm sect ion at the ent rance  to the tube; 
is the veloci ty of the gas  at the ent rance  into the tube,  r ega rded  as known; 
is the veloci ty  of the liquid at the boundary of the l amina r  under layer ;  
a r e  the volume flows of the gas and liquid, r e spec t ive ly ;  
is the kinemat ic  v i scos i ty  of the cor responding  component;  
is the f r ic t ional  s t r e s s  at the sur face  of the liquid; 
is the frictional stress at the tube wall for laminar motion of the liquid; 
is an experimental coefficient; 
are constants determined by the kinematic flow of the liquid; 
is the amplitude function; 
is the time; 
is the wave number; 
is the damping decrement; 
are constants ; 
is the wave velocity; 
is the height of the wave; 
is an auxiliary variable. 
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